3.5.92 \(\int \frac {\sqrt {a+b x}}{\sqrt {x}} \, dx\)

Optimal. Leaf size=44 \[ \sqrt {x} \sqrt {a+b x}+\frac {a \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {x}}{\sqrt {a+b x}}\right )}{\sqrt {b}} \]

________________________________________________________________________________________

Rubi [A]  time = 0.02, antiderivative size = 44, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.267, Rules used = {50, 63, 217, 206} \begin {gather*} \sqrt {x} \sqrt {a+b x}+\frac {a \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {x}}{\sqrt {a+b x}}\right )}{\sqrt {b}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + b*x]/Sqrt[x],x]

[Out]

Sqrt[x]*Sqrt[a + b*x] + (a*ArcTanh[(Sqrt[b]*Sqrt[x])/Sqrt[a + b*x]])/Sqrt[b]

Rule 50

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + n + 1)), x] + Dist[(n*(b*c - a*d))/(b*(m + n + 1)), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rubi steps

\begin {align*} \int \frac {\sqrt {a+b x}}{\sqrt {x}} \, dx &=\sqrt {x} \sqrt {a+b x}+\frac {1}{2} a \int \frac {1}{\sqrt {x} \sqrt {a+b x}} \, dx\\ &=\sqrt {x} \sqrt {a+b x}+a \operatorname {Subst}\left (\int \frac {1}{\sqrt {a+b x^2}} \, dx,x,\sqrt {x}\right )\\ &=\sqrt {x} \sqrt {a+b x}+a \operatorname {Subst}\left (\int \frac {1}{1-b x^2} \, dx,x,\frac {\sqrt {x}}{\sqrt {a+b x}}\right )\\ &=\sqrt {x} \sqrt {a+b x}+\frac {a \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {x}}{\sqrt {a+b x}}\right )}{\sqrt {b}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.09, size = 62, normalized size = 1.41 \begin {gather*} \frac {\frac {a^{3/2} \sqrt {\frac {b x}{a}+1} \sinh ^{-1}\left (\frac {\sqrt {b} \sqrt {x}}{\sqrt {a}}\right )}{\sqrt {b}}+\sqrt {x} (a+b x)}{\sqrt {a+b x}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a + b*x]/Sqrt[x],x]

[Out]

(Sqrt[x]*(a + b*x) + (a^(3/2)*Sqrt[1 + (b*x)/a]*ArcSinh[(Sqrt[b]*Sqrt[x])/Sqrt[a]])/Sqrt[b])/Sqrt[a + b*x]

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.06, size = 47, normalized size = 1.07 \begin {gather*} \sqrt {x} \sqrt {a+b x}-\frac {a \log \left (\sqrt {a+b x}-\sqrt {b} \sqrt {x}\right )}{\sqrt {b}} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[Sqrt[a + b*x]/Sqrt[x],x]

[Out]

Sqrt[x]*Sqrt[a + b*x] - (a*Log[-(Sqrt[b]*Sqrt[x]) + Sqrt[a + b*x]])/Sqrt[b]

________________________________________________________________________________________

fricas [A]  time = 0.95, size = 93, normalized size = 2.11 \begin {gather*} \left [\frac {a \sqrt {b} \log \left (2 \, b x + 2 \, \sqrt {b x + a} \sqrt {b} \sqrt {x} + a\right ) + 2 \, \sqrt {b x + a} b \sqrt {x}}{2 \, b}, -\frac {a \sqrt {-b} \arctan \left (\frac {\sqrt {b x + a} \sqrt {-b}}{b \sqrt {x}}\right ) - \sqrt {b x + a} b \sqrt {x}}{b}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^(1/2)/x^(1/2),x, algorithm="fricas")

[Out]

[1/2*(a*sqrt(b)*log(2*b*x + 2*sqrt(b*x + a)*sqrt(b)*sqrt(x) + a) + 2*sqrt(b*x + a)*b*sqrt(x))/b, -(a*sqrt(-b)*
arctan(sqrt(b*x + a)*sqrt(-b)/(b*sqrt(x))) - sqrt(b*x + a)*b*sqrt(x))/b]

________________________________________________________________________________________

giac [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^(1/2)/x^(1/2),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

maple [A]  time = 0.00, size = 62, normalized size = 1.41 \begin {gather*} \frac {\sqrt {\left (b x +a \right ) x}\, a \ln \left (\frac {b x +\frac {a}{2}}{\sqrt {b}}+\sqrt {b \,x^{2}+a x}\right )}{2 \sqrt {b x +a}\, \sqrt {b}\, \sqrt {x}}+\sqrt {b x +a}\, \sqrt {x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x+a)^(1/2)/x^(1/2),x)

[Out]

x^(1/2)*(b*x+a)^(1/2)+1/2*a*((b*x+a)*x)^(1/2)/(b*x+a)^(1/2)/x^(1/2)*ln((b*x+1/2*a)/b^(1/2)+(b*x^2+a*x)^(1/2))/
b^(1/2)

________________________________________________________________________________________

maxima [B]  time = 2.99, size = 70, normalized size = 1.59 \begin {gather*} -\frac {a \log \left (-\frac {\sqrt {b} - \frac {\sqrt {b x + a}}{\sqrt {x}}}{\sqrt {b} + \frac {\sqrt {b x + a}}{\sqrt {x}}}\right )}{2 \, \sqrt {b}} - \frac {\sqrt {b x + a} a}{{\left (b - \frac {b x + a}{x}\right )} \sqrt {x}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^(1/2)/x^(1/2),x, algorithm="maxima")

[Out]

-1/2*a*log(-(sqrt(b) - sqrt(b*x + a)/sqrt(x))/(sqrt(b) + sqrt(b*x + a)/sqrt(x)))/sqrt(b) - sqrt(b*x + a)*a/((b
 - (b*x + a)/x)*sqrt(x))

________________________________________________________________________________________

mupad [B]  time = 0.68, size = 41, normalized size = 0.93 \begin {gather*} \sqrt {x}\,\sqrt {a+b\,x}+\frac {2\,a\,\mathrm {atanh}\left (\frac {\sqrt {b}\,\sqrt {x}}{\sqrt {a+b\,x}-\sqrt {a}}\right )}{\sqrt {b}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*x)^(1/2)/x^(1/2),x)

[Out]

x^(1/2)*(a + b*x)^(1/2) + (2*a*atanh((b^(1/2)*x^(1/2))/((a + b*x)^(1/2) - a^(1/2))))/b^(1/2)

________________________________________________________________________________________

sympy [A]  time = 1.92, size = 42, normalized size = 0.95 \begin {gather*} \sqrt {a} \sqrt {x} \sqrt {1 + \frac {b x}{a}} + \frac {a \operatorname {asinh}{\left (\frac {\sqrt {b} \sqrt {x}}{\sqrt {a}} \right )}}{\sqrt {b}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)**(1/2)/x**(1/2),x)

[Out]

sqrt(a)*sqrt(x)*sqrt(1 + b*x/a) + a*asinh(sqrt(b)*sqrt(x)/sqrt(a))/sqrt(b)

________________________________________________________________________________________